
Tutorial - Next Steps in Scripting
Qlik Sense®

May 2024
Copyright © 1993-2025 QlikTech International AB. All rights reserved.

HELP.QLIK.COM

© 2025 QlikTech International AB. All rights reserved. All company and/or product names may be
trade names, trademarks and/or registered trademarks of the respective owners with which they
are associated.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 3

1 Welcome to this tutorial! 5
1.1 What you will learn 5
1.2 Who should take this course 5
1.3 Package contents 5
1.4 Lessons in this tutorial 6
1.5 Further reading and resources 6

2 LOAD and SELECT statements 7
3 Transforming data 8

3.1 Using the Crosstable prefix 8
Crosstable prefix 8
Clearing the memory cache 12

3.2 Combining tables with Join and Keep 12
Join 13
Using Join 13
Keep 16
Inner 17
Left 18
Right 19

3.3 Using inter-record functions: Peek, Previous, and Exists 20
Peek() 21
Previous() 21
Exists() 21
Using Peek() and Previous() 21
Using Exists() 25

3.4 Matching intervals and iterative loading 28
Using the IntervalMatch() prefix 28
Using a While loop and iterative loading IterNo() 30
Open and closed intervals 32

4 Data cleansing 33
4.1 Mapping tables 33

Rules: 33
4.2 Mapping functions and statements 33
4.3 Mapping prefix 33
4.4 ApplyMap() function 34
4.5 MapSubstring() function 36
4.6 Map … Using 38

5 Handling hierarchical data 40
5.1 Hierarchy prefix 40
5.2 HierarchyBelongsTo prefix 41

Authorization 42
6 QVD files 45

6.1 Creating QVD files 46
Store 46

6.2 Reading data from QVD files 47
Buffer 48

Contents

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 4

6.3 Thank you! 51

Contents

1 Welcome to this tutorial!

1 Welcome to this tutorial!
Welcome to this tutorial, which will introduce you to advanced scripting in Qlik Sense.

Once you are familiar with the basics of scripting, you can start to perform more
sophisticated operations on your data as you load it into Qlik Sense. This can include,
for example, transforming data using cross-tables, cleansing data, and creating and
loading data from Qlik data files known as QVD files.

1.1 What you will learn
After completing this tutorial, you should be comfortable with loading data using some of the more
advanced scripting functions in Qlik Sense.

1.2 Who should take this course
You should be familiar with the basics of scripting in Qlik Sense. That is, you have loaded data and
manipulated data using scripts.

If you have not already done so, we recommend completing the Scripting for beginners tutorial.

You require access to the data load editor and should be allowed to load data in Qlik Sense
Enterprise on Windows.

The instructions also apply generally for Qlik Sense Cloud Business.

1.3 Package contents
The zip package that you downloaded contains the following data files that you need to complete
the tutorial:

l Cutlery.xlsx
l Data.xlsx
l Events.txt
l Employees.xlsx
l Intervals.txt
l Product.xlsx
l Salesman.xlsx
l Transactions.csv
l Winedistricts.txt

The package also contains a copy of the Advanced Scripting Tutorial app. Additional script sections
in the app contain the scripts for the other apps that you create in this tutorial. You can upload the
app to your hub.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 5

1 Welcome to this tutorial!

We recommend building the app yourself as described in the tutorial to maximize your learning.
Additionally, you would have to upload and connect to your data files as described in the tutorial for
the data loads to work.

However, if you run into problems, the app may help you troubleshoot. We have indicated which
script segments are associated with each lesson.

1.4 Lessons in this tutorial
Depending on your experience with Qlik Sense, this tutorial should take 3-4 hours to complete. The
topics are designed to be completed in sequence. However, you can step away and return at any
time. There are, mercifully, no tests.

Transforming data
Using the Crosstable prefix
Combining tables with Join and Keep
Using inter-record functions: Peek, Previous, and Exists
Matching intervals and iterative loading
Data cleansing
Handling hierarchical data
QVD files

1.5 Further reading and resources
l ≤ Qlik offers a wide variety of resources when you want to learn more.
l Qlik online help is available.
l Training, including free online courses, is available in the≤ Qlik Continuous Classroom.
l Discussion forums, blogs, and more can be found in≤ Qlik Community.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 6

http://www.qlik.com/
http://help.qlik.com/
http://qcc.qlik.com/
http://community.qlik.com/

2 LOAD and SELECT statements

2 LOAD and SELECT statements
You can load data into Qlik Sense using the LOAD and SELECT statements. Each of these
statements generates an internal table. LOAD is used to load data from files, while SELECT is used
to load data from databases.

In this tutorial, you will be using data from files, so you will be using LOAD statements.

You can also use a preceding LOAD to be able to manipulate the content of the data loaded. For
example, renaming fields has to be done in a LOAD statement, whereas the SELECT statement does
not permit any changes to field names.

The following rules apply when loading data into Qlik Sense:

l Qlik Sense does not differentiate between tables generated by a LOAD or a SELECT
statement. This means that if several tables are loaded, it does not matter whether the tables
are loaded by LOAD or SELECT statements or by a mix of the two.

l The order of the fields in the statement or in the original table in the database is unimportant
to the Qlik Sense logic.

l Field names are case sensitive and are used to establish associations among data tables.
Due to this, at times it is necessary to rename fields in the load script to achieve a desired
data model.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 7

3 Transforming data

3 Transforming data
You can transform and manipulate data in the Data load editor before using the data in
your app.

One of the advantages of data manipulation is that you can choose to load only a subset of the data
from a file, such as a few chosen columns from a table, to make the data handling more efficient.
You can also load the data more than once to split up the raw data into several new logical tables. It
is also possible to load data from more than one source and merge it into one table in Qlik Sense.

The following exercises will show you how to load data using the Crosstable prefix. You will also
learn how to join tables, use inter-record functions such as Peek and Previous, and load the same
row several times using While Load.

3.1 Using the Crosstable prefix
Cross tables are a common type of table featuring a matrix of values between two
orthogonal lists of header data. Whenever you have a cross table of data, you can use
the Crosstable prefix to transform the data and create the desired fields.

Crosstable prefix
In the following Product table you have one column per month and one row per product.

Product Jan 2014 Feb 2014 Mar 2014 Apr 2014 May 2014 Jun 2014

A 100 98 100 83 103 82

B 284 279 297 305 294 292

C 50 53 50 54 49 51

Product table

When you load the table, the output is a table with one field for Product and one field for each of the
months.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 8

3 Transforming data

Product table with Product field, and one field each for the months

If you want to analyze this data, it is much easier to have all numbers in one field and all months in
another. In this case, that is a three-column table with one column for each category (Product,
Month, Sales).

Product table with Product, Month, and Sales fields

The Crosstable prefix converts the data to a table with one column for Month and another for Sales.
Another way to express it is to say that it takes field names and converts these to field values.

Do the following:

1. Create a new app and call it Advanced Scripting Tutorial.
2. Add a new script section in the Data load editor.
3. Name the section Product.
4. Under AttachedFiles in the right menu, click Select data.
5. Upload and then select Product.xlsx.
6. Select the Product table in the Select data fromwindow.

Under Field names, make sure that Embedded field names is selected to include
the names of the table fields when you load the data.

7. Click Insert script.
Your script should look like this:

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 9

3 Transforming data

LOAD

Product,

"Jan 2014",

"Feb 2014",

"Mar 2014",

"Apr 2014",

"May 2014",

"Jun 2014"

FROM [lib://AttachedFiles/Product.xlsx]

(ooxml, embedded labels, table is Product);

8. Click Load data.
9. Open the Data model viewer. The data model looks like this:

Product table with Product field, and one field each for the months

10. Click the Product tab in the Data load editor.
11. Enter the following above the LOAD statement:

CrossTable(Month, Sales)

12. Click Load data.
13. Open the Data model viewer. The data model looks like this:

Product table with Product, Month, and Sales fields

Note that the input data typically has only one column as a qualifier field; as an internal key
(Product in the above example). But you can have several. If so, all qualifying fields must be
listed before the attribute fields in the LOAD statement, and the third parameter to the

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 10

3 Transforming data

Crosstable prefix must be used to define the number of qualifying fields. You cannot have a
preceding LOAD or a prefix in front of the Crosstable keyword. However, you can use auto-
concatenate.

In a table in Qlik Sense, your data looks like this:

Table showing data loaded using Crosstable prefix

You can now, for example, create a bar chart using the data:

Bar chart showing data loaded using Crosstable prefix

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 11

3 Transforming data

To learn more about Crosstable, see this blog post in Qlik Community: The Crosstable
Load. The behaviors are discussed in the context of QlikView. However, the logic applies
equally to Qlik Sense.

Numeric interpretation will not work for the attribute fields. This means that if you have months as
column headers, these will not be automatically interpreted. The work-around is to use the
Crosstable prefix to create a temporary table, and to run a second pass through it to make the
interpretations as shown in the following example.

Note that this is an example only. There are no accompanying exercises to be completed in Qlik
Sense.

tmpData:

Crosstable (MonthText, Sales)

LOAD Product, [Jan 2014], [Feb 2014], [Mar 2014], [Apr 2014], [May 2014], [Jun 2014]

FROM ...

Final:

LOAD Product,

Date(Date#(MonthText,'MMM YYYY'),'MMM YYYY') as Month,

Sales

Resident tmpData;

Drop Table tmpData;

Clearing the memory cache
You can delete tables that you create to clear the memory cache. When you load into a temporary,
as in the previous section, you should drop it when it is not needed anymore. For example:

DROP TABLE Table1, Table2, Table3, Table4;

DROP TABLES Table1, Table2, Table3, Table4;

You can also drop fields. For example:

DROP FIELD Field1, Field2, Field3, Field4;

DROP FIELDS Field1, Field2, Field3, Field4;

DROP FIELD Field1 from Table1;

DROP FIELDS Field1 from Table1;

As you can see, the keywords TABLE and FIELD and can be singular or plural.

3.2 Combining tables with Join and Keep
A join is an operation that uses two tables and combines them into one. The records of the resulting
table are combinations of records in the original tables, usually in such a way that the two records
contributing to any given combination in the resulting table have a common value for one or several
common fields, a so-called natural join. In Qlik Sense, joins can be made in the script, producing
logical tables.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 12

https://community.qlik.com/t5/Qlik-Design-Blog/The-Crosstable-Load/ba-p/1468083
https://community.qlik.com/t5/Qlik-Design-Blog/The-Crosstable-Load/ba-p/1468083

3 Transforming data

It is possible to join tables already in the script. The Qlik Sense logic will then not see the separate
tables, but rather the result of the join, which is a single internal table. In some situations this is
needed, but there are disadvantages:

l The loaded tables often become larger, and Qlik Sense works slower.
l Some information may be lost: the frequency (number of records) within the original table

may no longer be available.

The Keep functionality, which has the effect of reducing one or both of the two tables to the
intersection of table data before the tables are stored in Qlik Sense, has been designed to reduce
the number of cases where explicit joins need to be used.

In this documentation, the term join is usually used for joins made before the internal
tables are created. The association made after the internal tables are created, is
however essentially also a join.

Join
The simplest way to make a join is with the Join prefix in the script, which joins the internal table
with another named table or with the last previously created table. The join will be an outer join,
creating all possible combinations of values from the two tables.

Example:

LOAD a, b, c from table1.csv;

join LOAD a, d from table2.csv;

The resulting internal table has the fields a, b, c and d. The number of records differs depending on
the fieldvalues of the two tables.

The names of the fields to join over must be exactly the same. The number of fields to
join over is arbitrary. Usually the tables should have one or a few fields in common. No
field in common will render the cartesian product of the tables. All fields in common is
also possible, but usually makes no sense. Unless a table name of a previously loaded
table is specified in the Join statement the Join prefix uses the last previously created
table. The order of the two statements is thus not arbitrary.

Using Join
The explicit Join prefix in the Qlik Sense script language performs a full join of the two tables. The
result is one table. Such joins can often result in very large tables.

Do the following:

1. Open the Advanced Scripting Tutorial app.
2. Add a new script section in the Data load editor.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 13

3 Transforming data

3. Call the section Transactions.
4. Under AttachedFiles in the right menu, click Select data.
5. Upload and then select Transactions.csv.

Under Field names, make sure that Embedded field names is selected to include
the names of the table fields when you load the data.

6. In the Select data fromwindow, click Insert script.
7. Upload and then select Salesman.xlsx.
8. In the Select data fromwindow, click Insert script.

Your script should look like this:

LOAD

"Transaction ID",

"Salesman ID",

Product,

"Serial No",

"ID Customer",

"List Price",

"Gross Margin"

FROM [lib://AttachedFiles/Transactions.csv]

(txt, codepage is 28591, embedded labels, delimiter is ',', msq);

LOAD

"Salesman ID",

Salesman,

"Distributor ID"

FROM [lib://AttachedFiles/Salesman.xlsx]

(ooxml, embedded labels, table is Salesman);

9. Click Load data.
10. Open the Data model viewer. The data model looks like this:

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 14

3 Transforming data

Data model: Transactions, Salesman, and Product tables

However, having the Transactions and Salesman tables separated may not be the required result. It
may be better to join the two tables.

Do the following:

1. To set a name for the joined table, add the following line above the first LOAD statement:
Transactions:

2. To join the Transactions and Salesman tables, add the following line above the second LOAD
statement:
Join(Transactions)

Your script should look like this:

Transactions:

LOAD

"Transaction ID",

"Salesman ID",

Product,

"Serial No",

"ID Customer",

"List Price",

"Gross Margin"

FROM [lib://AttachedFiles/Transactions.csv]

(txt, codepage is 28591, embedded labels, delimiter is ',', msq);

Join(Transactions)

LOAD

"Salesman ID",

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 15

3 Transforming data

Salesman,

"Distributor ID"

FROM [lib://AttachedFiles/Salesman.xlsx]

(ooxml, embedded labels, table is Salesman);

3. Click Load data.
4. Open the Data model viewer. The data model looks like this:

Data model: Transactions and Product tables

All the fields of the Transactions and Salesman tables are now combined into a single
Transactions table.

To learn more about when to use Join, see these blog posts in Qlik Community: To Join
or not to Join, Mapping as an Alternative to Joining. The behaviors are discussed in the
context of QlikView. However, the logic applies equally to Qlik Sense.

Keep
One of the main features of Qlik Sense is its ability to make associations between tables instead of
joining them, which reduces space in memory, increases speed and gives enormous flexibility. The
Keep functionality has been designed to reduce the number of cases where explicit joins need to be
used.

The Keep prefix between two LOAD or SELECT statements reduces one or both of the two tables to
the intersection of table data before they are stored in Qlik Sense. The Keep prefix must always be
preceded by one of the keywords Inner, Left or Right. The selection of records from the tables is
made in the same way as in a corresponding join. However, the two tables are not joined and will be
stored in Qlik Sense as two separately named tables.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 16

https://community.qlik.com/t5/Qlik-Design-Blog/To-Join-or-not-to-Join/ba-p/1463102
https://community.qlik.com/t5/Qlik-Design-Blog/To-Join-or-not-to-Join/ba-p/1463102
https://community.qlik.com/t5/Qlik-Design-Blog/Mapping-as-an-Alternative-to-Joining/bc-p/1473459

3 Transforming data

Inner
The Join and Keep prefixes in the data load script can be preceded by the prefix Inner.

If used before Join, it specifies that the join between the two tables should be an inner join. The
resulting table contains only combinations between the two tables with a full data set from both
sides.

If used before Keep, it specifies that the two tables should be reduced to their common intersection
before being stored in Qlik Sense.

Example:

In these examples we use the source tables Table1 and Table2.

Note that these are examples only. There are no accompanying exercises to be completed in Qlik
Sense.

A B

1 aa

2 cc

3 ee

Table 1

A C

1 xx

4 yy

Table2

Inner Join
First, we perform an Inner Join on the tables, resulting in VTable, containing only one row, the only
record existing in both tables, with data combined from both tables.

VTable:

SELECT * from Table1;

inner join SELECT * from Table2;

A B C

1 aa xx

VTable

Inner Keep
If we perform an Inner Keep instead, we will still have two tables. The two tables are associated via
the common field A.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 17

3 Transforming data

VTab1:

SELECT * from Table1;

VTab2:

inner keep SELECT * from Table2;

A B

1 aa

VTab1

A C

1 xx

VTab2

Left
The Join and Keep prefixes in the data load script can be preceded by the prefix left.

If used before Join, it specifies that the join between the two tables should be a left join. The
resulting table only contains combinations between the two tables with a full data set from the first
table.

If used before Keep, it specifies that the second table should be reduced to its common intersection
with the first table before being stored in Qlik Sense.

Example:

In these examples we use the source tables Table1 and Table2.

A B

1 aa

2 cc

3 ee

Table1

A C

1 xx

4 yy

Table2

First, we perform a Left Join on the tables, resulting in VTable, containing all rows from Table1,
combined with fields from matching rows in Table2.

VTable:

SELECT * from Table1;

left join SELECT * from Table2;

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 18

3 Transforming data

A B C

1 aa xx

2 cc -

3 ee -

VTable

If we perform a Left Keep instead, we will still have two tables. The two tables are associated via
the common field A.

VTab1:

SELECT * from Table1;

VTab2:

left keep SELECT * from Table2;

A B

1 aa

2 cc

3 ee

VTab1

A C

1 xx

VTab2

Right
The Join and Keep prefixes in the Qlik Sense script language can be preceded by the prefix right.

If used before Join, it specifies that the join between the two tables should be a Right Join. The
resulting table only contains combinations between the two tables with a full data set from the
second table.

If used before Keep, it specifies that the first table should be reduced to its common intersection
with the second table before being stored in Qlik Sense.

Example:

In these examples we use the source tables Table1 and Table2.

A B

1 aa

2 cc

3 ee

Table1

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 19

3 Transforming data

A C

1 xx

4 yy

Table2

First, we perform a Right Join on the tables, resulting in VTable, containing all rows from Table2,
combined with fields from matching rows in Table1.

VTable:

SELECT * from Table1;

right join SELECT * from Table2;

A B C

1 aa xx

4 - yy

VTable

If we perform a Right Keep instead, we will still have two tables. The two tables are associated via
the common field A.

VTab1:

SELECT * from Table1;

VTab2:

right keep SELECT * from Table2;

A B

1 aa

VTab1

A C

1 xx

4 yy

VTab2

3.3 Using inter-record functions: Peek, Previous, and
Exists

These functions are used when a value from previously loaded records of data is
needed for the evaluation of the current record.

In this part of the tutorial we will be examining the Peek(), Previous(), and Exists() functions.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 20

3 Transforming data

Peek()
Peek() returns the value of a field in a table for a row that has already been loaded. The row number
can be specified, as can the table. If no row number is specified, the last previously loaded record
will be used.

Syntax:
Peek(fieldname [, row [, tablename]])

Row must be an integer. 0 denotes the first record, 1 the second and so on. Negative numbers
indicate order from the end of the table. -1 denotes the last record read.

If no row is stated, -1 is assumed.

Tablename is a table label without the ending colon. If no tablename is stated, the current table is
assumed. If used outside the LOAD statement or referring to another table, the tablename must be
included.

Previous()
Previous() finds the value of the expr expression using data from the previous input record that has
not been discarded because of awhere clause. In the first record of an internal table, the function
will return NULL.

Syntax:
Previous(expression)

The Previous() function may be nested in order to access records further back. Data is fetched
directly from the input source, making it possible to also refer to fields which have not been loaded
into Qlik Sense, that is, even if they have not been stored in the associated database.

Exists()
Exists() determines whether a specific field value has already been loaded into the field in the data
load script. The function returns TRUE or FALSE, so can be used in thewhere clause of a
LOAD statement or an IF statement.

Syntax:
Exists(field [, expression])

The field must exist in the data loaded so far by the script. Expression is an expression evaluating to
the field value to look for in the specified field. If omitted, the current record’s value in the specified
field will be assumed.

Using Peek() and Previous()
In their simplest form, Peek() and Previous() are used to identify specific values within a table. Here
is a sample of the data in the Employees table that you will load in this exercise.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 21

3 Transforming data

Date Hired Terminated

1/1/2011 6 0

2/1/2011 4 2

3/1/2011 6 1

4/1/2011 5 2

Sample of data from Employees table

Currently this only collects data for month, hires and terminations, so we are going to add fields for
Employee Count and Employee Var, using the Peek() and Previous() functions, to see the monthly
difference in total employees.

Do the following:

1. Open the Advanced Scripting Tutorial app.
2. Add a new script section in the Data load editor.
3. Call the section Employees.
4. Under AttachedFiles in the right menu, click Select data.
5. Upload and then select Employees.xlsx.

Under Field names, make sure that Embedded field names is selected to include
the names of the table fields when you load the data.

6. In the Select data fromwindow, click Insert script.
Your script should look like this:

LOAD

"Date",

Hired,

Terminated

FROM [lib://AttachedFiles/Employees.xlsx]

(ooxml, embedded labels, table is Sheet1);

7. Modify the script so that it now looks like this:
[Employees Init]:

LOAD

rowno() as Row,

Date(Date) as Date,

Hired,

Terminated,

If(rowno()=1, Hired-Terminated, peek([Employee Count], -1)+(Hired-Terminated)) as

[Employee Count]

FROM [lib://AttachedFiles/Employees.xlsx]

(ooxml, embedded labels, table is Sheet1);

The dates in the Date field in the Excel sheet are in the format MM/DD/YYYY. To ensure
dates are interpreted correctly using the format from the system variables the Date function
is applied to the Date field.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 22

3 Transforming data

The Peek() function lets you identify any value loaded for a defined field. In the expression,
we first look to see if the rowno() is equal to 1. If it is equal to 1, no Employee Count will exist,
so we populate the field with the difference of Hired minus Terminated.

If the rowno() is greater than 1, we look at last month’s Employee Count and use that number
to add to the difference of that month’s Hired minus Terminated employees.

Notice too that in the Peek() function we use a (-1). This tells Qlik Sense to look at the record
above the current record. If the (-1) is not specified, Qlik Sense will assume that you want to
look at the previous record.

8. Add the following to the end of your script:
[Employee Count]:

LOAD

Row,

Date,

Hired,

Terminated,

[Employee Count],

If(rowno()=1,0,[Employee Count]-Previous([Employee Count])) as [Employee Var]

Resident [Employees Init] Order By Row asc;

Drop Table [Employees Init];

The Previous() function lets you identify the last value loaded for a defined field. In the
expression we first look to see if the rowno() is equal to 1. If it is equal to 1, we know that
there will be no Employee Var because there is no record for the previous month’s Employee
Count. So we simply enter 0 for the value.

If the rowno() is greater than 1, we know that there will be an Employee Var so we look at last
month’s Employee Count and subtract that number from the current month’s Employee
Count to create the value in the Employee Var field.

Your script should look like this:

[Employees Init]:

LOAD

rowno() as Row,

Date(Date) as Date,

Hired,

Terminated,

If(rowno()=1, Hired-Terminated, peek([Employee Count], -1)+(Hired-Terminated)) as

[Employee Count]

FROM [lib://AttachedFiles/Employees.xlsx]

(ooxml, embedded labels, table is Sheet1);

[Employee Count]:

LOAD

Row,

Date,

Hired,

Terminated,

[Employee Count],

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 23

3 Transforming data

If(rowno()=1,0,[Employee Count]-Previous([Employee Count])) as [Employee Var]

Resident [Employees Init] Order By Row asc;

Drop Table [Employees Init];

9. Click Load data.
In a new sheet in the app overview, create a table using Date, Hired, Terminated, Employee
Count and Employee Var as the columns of the table. The resulting table should look like this:

Table following use of Peek and Previous in script

Peek() and Previous() allow you to target defined rows within a table. The biggest difference
between the two functions is that the Peek() function allows the user to look into a field that was
not previously loaded into the script whereas the Previous() function can only look into a previously
loaded field. Previous() operates on the input to the LOAD statement, whereas Peek() operates on
the output of the LOAD statement. (Same as the difference between RecNo() and RowNo().) This
means that the two functions will behave differently if you have a Where-clause.

So the Previous() function would be better when you need to show the current value versus the
previous value. In the example we calculated the employee variance from month to month.

The Peek() function would be better when you are targeting a field that has not been previously
loaded into the table, or when youo need to target a specific row. This was shown in the example
where we calculated the Employee Count by peeking into the previous month’s Employee Count,
and then added the difference between the hired and terminated employees for the current month.
Remember that Employee Count was not a field in the original file

To learn more about when to use Peek() and Previous(), see this blog post in Qlik
Community: Peek() vs Previous() – When to Use Each. The behaviors are discussed in
the context of QlikView. However, the logic applies equally to Qlik Sense.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 24

https://community.qlik.com/t5/Qlik-Design-Blog/Peek-vs-Previous-When-to-Use-Each/ba-p/1475913

3 Transforming data

Using Exists()
The Exists() function is often used with the Where clause in the script in order to load data if related
data has already been loaded in the data model.

In the following example we also use the Dual() function to assign numeric values to strings.

Do the following:

1. Create a new app and give it a name.
2. Add a new script section in the Data load editor.
3. Call the section People.
4. Enter the following script:

//Add dummy people data

PeopleTemp:

LOAD * INLINE [

PersonID, Person

1, Jane

2, Joe

3, Shawn

4, Sue

5, Frank

6, Mike

7, Gloria

8, Mary

9, Steven,

10, Bill

];

//Add dummy age data

AgeTemp:

LOAD * INLINE [

PersonID, Age

1, 23

2, 45

3, 43

4, 30

5, 40

6, 32

7, 45

8, 54

9,

10, 61

11, 21

12, 39

];

//LOAD new table with people

People:

NoConcatenate LOAD

PersonID,

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 25

3 Transforming data

Person

Resident PeopleTemp;

Drop Table PeopleTemp;

//Add age and age bucket fields to the People table

Left Join (People)

LOAD

PersonID,

Age,

If(IsNull(Age) or Age='', Dual('No age', 5),

If(Age<25, Dual('Under 25', 1),

If(Age>=25 and Age <35, Dual('25-34', 2),

If(Age>=35 and Age<50, Dual('35-49' , 3),

If(Age>=50, Dual('50 or over', 4)

))))) as AgeBucket

Resident AgeTemp

Where Exists(PersonID);

DROP Table AgeTemp;

5. Click Load data.
In the script, the Age and AgeBucket fields are loaded only if the PersonID has already been
loaded in the data model.

Notice in the AgeTemp table that there are ages listed for PersonID 11 and 12 but since those
IDs were not loaded in the data model (in the People table), they are excluded by the Where
Exists(PersonID) clause. This clause can also be written like this: Where Exists(PersonID,
PersonID).

The output of the script look like this:

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 26

3 Transforming data

Table following use of Exists in script

If none of the PersonIDs in the AgeTemp table had been loaded into the data model, then the
Age and AgeBucket fields would not have been joined to the People table. Using the Exists()
function can help to prevent orphan records/data in the data model, that is, Age and
AgeBucket fields that do not have any associated people.

6. Create a new sheet and give it a name.
7. Open the new sheet and click Edit sheet.
8. Add a standard table to the sheet with the dimension AgeBucket and name the visualization

Age Groups.
9. Add a bar chart to the sheet with the dimension AgeBucket, and the measure Count

([AgeBucket]). Name the visualization Number of people in each age group.
10. Adjust the properties of the table and bar chart to your preference and then click Done.

Your sheet should look similar to this:

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 27

3 Transforming data

Sheet with groupings by age

The Dual() function is useful in the script, or in a chart expression, when there is the need to assign
a numeric value to a string.

In the script above you have an application that loads ages, and you have decided to put those ages
in buckets so that you can create visualizations based on the age buckets versus the actual ages.
There is a bucket for people under 25, between 25 and 35, and so on. By using the Dual() function,
the age buckets can be assigned a numeric value that can later be used to sort the age buckets in a
list box or in a chart. So, as in the app sheet, the sort puts "No age" at the end of the list.

To learn more about Exists() and Dual(), see this blog post in Qlik Community: Dual &
Exists – Useful Functions

3.4 Matching intervals and iterative loading
The Intervalmatch prefix to a LOAD or SELECT statement is used to link discrete
numeric values to one or more numeric intervals. This is a very powerful feature that
can be used, for example, in production environments.

Using the IntervalMatch() prefix
The most basic interval match is when you have a list of numbers or dates (events) in one table, and
a list of intervals in a second table. The goal is to link the two tables. In general, this is a many to
many relationship, that is, an interval can have many dates belonging to it and a date can belong to
many intervals. To solve this, you need to create a bridge table between the two original tables.
There are several ways to do this.

The simplest way to solve this problem in Qlik Sense is to use the IntervalMatch() prefix in front of
either a LOAD or a SELECT statement. The LOAD/SELECT statement needs to contain two fields

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 28

https://community.qlik.com/t5/Qlik-Design-Blog/Dual-Exists-Useful-Functions/ba-p/1465290
https://community.qlik.com/t5/Qlik-Design-Blog/Dual-Exists-Useful-Functions/ba-p/1465290

3 Transforming data

only, the From and To fields defining the intervals. The IntervalMatch() prefix will then generate all
combinations between the loaded intervals and a previously loaded numeric field specified as
parameter to the prefix.

Do the following:

1. Create a new app and give it a name.
2. Add a new script section in the Data load editor.
3. Call the sections Events.
4. Under AttachedFiles in the right menu, click Select data.
5. Upload and then select Events.txt.
6. In the Select data fromwindow, click Insert script.
7. Upload and then select Intervals.txt.
8. In the Select data fromwindow, click Insert script.
9. In the script, name the first table Events, and name the second table Intervals.

10. At the end of the script add an IntervalMatch to create a third table that bridges the two first
tables:
BridgeTable:

IntervalMatch (EventDate)

LOAD distinct IntervalBegin, IntervalEnd

Resident Intervals;

11. Your script should look like this:
Events:

LOAD

EventID,

EventDate,

EventAttribute

FROM [lib://AttachedFiles/Events.txt]

(txt, utf8, embedded labels, delimiter is '\t', msq);

Intervals:

LOAD

IntervalID,

IntervalAttribute,

IntervalBegin,

IntervalEnd

FROM [lib://AttachedFiles/Intervals.txt]

(txt, utf8, embedded labels, delimiter is '\t', msq);

BridgeTable:

IntervalMatch (EventDate)

LOAD distinct IntervalBegin, IntervalEnd

Resident Intervals;

12. Click Load data.
13. Open the Data model viewer. The data model looks like this:

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 29

3 Transforming data

Data model: Events, BridgeTable, Intervals, and $Syn1 tables

The data model contains a composite key (the IntervalBegin and IntervalEnd fields) which will
manifest itself as a Qlik Sense synthetic key.

The basic tables are:

l The Events table that contains exactly one record per event.
l The Intervals table that contains exactly one record per interval.
l The bridge table that contains exactly one record per combination of event and

interval, and that links the two previous tables.
Note that an event may belong to several intervals if the intervals are overlapping. And an
interval can of course have several events belonging to it.

This data model is optimal, in the sense that it is normalized and compact. The Events table
and the Intervals table are both unchanged and contain the original number of records. All
Qlik Sense calculations operating on these tables, for example, Count(EventID), will work and
will be evaluated correctly.

To learn more about IntervalMatch(), see this blog post in Qlik Community: Using
IntervalMatch()

Using a While loop and iterative loading IterNo()
You can achieve almost the same bridge table using a While loop and IterNo() that creates
enumerable values between the lower and upper bounds of the interval.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 30

https://community.qlik.com/t5/Qlik-Design-Blog/Using-IntervalMatch/ba-p/1475510
https://community.qlik.com/t5/Qlik-Design-Blog/Using-IntervalMatch/ba-p/1475510

3 Transforming data

A loop inside the LOAD statement can be created using the While clause. For example:

LOAD Date, IterNo() as Iteration From … While IterNo() <= 4;

Such a LOAD statement will loop over each input record and load this over and over as long as the
expression in the While clause is true. The IterNo() function returns “1” in the first iteration, “2” in the
second, and so on.

You have a primary key for the intervals, the IntervalID, so the only difference in the script will be
how the bridge table is created:

Do the following:

1. Replace the existing Bridgetable statements with the following script:
BridgeTable:

LOAD distinct * Where Exists(EventDate);

LOAD IntervalBegin + IterNo() - 1 as EventDate, IntervalID

Resident Intervals

While IntervalBegin + IterNo() - 1 <= IntervalEnd;

2. Click Load data.
3. Open the Data model viewer. The data model looks like this:

Data model: Events, BridgeTable, and Intervals tables

Generally, the solution with three tables is the best one, because it allows for a many to many
relationship between intervals and events. But a common situation is that you know that an
event can only belong to one single interval. In this case, the bridge table is really not
necessary. The IntervalID can be stored directly in the event table. There are several ways to
achieve this, but the most useful is to join Bridgetable with the Events table.

4. Add the following script to the end of your script:
Join (Events)

LOAD EventDate, IntervalID

Resident BridgeTable;

Drop Table BridgeTable;

5. Click Load data.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 31

3 Transforming data

6. Open the Data model viewer. The data model looks like this:
Data model: Events and Intervals tables

Open and closed intervals
Whether an interval is open or closed is determined by the endpoints, whether these are included in
the interval or not.

l If the endpoints are included, it is a closed interval:
[a,b] = {x ∈ ℝ ∣ a ≤ x ≤ b}

l If the endpoints are not included, it is an open interval:
]a,b[= {x ∈ ℝ ∣ a < x < b}

l If one endpoint is included, it is a half-open interval:
[a,b[= {x ∈ ℝ ∣ a ≤ x < b}

If you have a case where the intervals are overlapping and a number can belong to more than one
interval, you usually need to use closed intervals.

However, in some cases you do not want overlapping intervals, you want a number to belong to one
interval only. Hence, you will get a problem if one point is the end of one interval and, at the same
time, the beginning of next. A number with this value will be attributed to both intervals. Hence, you
want half-open intervals.

A practical solution to this problem is to subtract a very small amount from the end value of all
intervals, thus creating closed, but non-overlapping intervals. If your numbers are dates, the
simplest way to do this is to use the function DayEnd() which returns the last millisecond of the day:

Intervals:

LOAD…, DayEnd(IntervalEnd – 1) as IntervalEnd From Intervals;

You can also subtract a small amount manually. If you do, make sure the subtracted amount isn’t too
small since the operation will be rounded to 52 significant binary digits (14 decimal digits). If you
use too small of an amount, the difference will not be significant and you will be back using the
original number.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 32

4 Data cleansing

4 Data cleansing
There are times when the source data that you load into Qlik Sense is not necessarily how you want
it in the Qlik Sense app. Qlik Sense provides a host of functions and statements that allow you to
transform our data into a format that works for us.

Mapping can be used in a Qlik Sense script to replace or modify field values or names when the
script is run, so mapping can be used to clean up data and make it more consistent or to replace
parts or all of a field value.

When you load data from different tables, field values denoting the same thing are not always
consistently named. Since this lack of consistency hinders associations, the problem needs to be
solved. This can be done in an elegant way by creating a mapping table for the comparison of field
values.

4.1 Mapping tables
Tables loaded via Mapping load or Mapping select are treated differently from other tables. They
are stored in a separate area of the memory and used only as mapping tables when the script is run.
After the script is run these tables are automatically dropped.

Rules:
l A mapping table must have two columns, the first one containing the comparison values and

the second the desired mapping values.
l The two columns must be named, but the names have no relevance in themselves. The

column names have no connection to field names in regular internal tables.

4.2 Mapping functions and statements
The following mapping functions/statements will be addressed in this tutorial:

• Mapping prefix

• ApplyMap()

• MapSubstring()

• Map … Using statement

• Unmap statement

4.3 Mapping prefix
The Mapping prefix is used in a script to create a mapping table. The mapping table can then be
used with the ApplyMap() function, the MapSubstring() function or the Map … Using statement.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 33

4 Data cleansing

Do the following:

1. Create a new app and give it a name.
2. Add a new script section in the Data load editor.
3. Call the section Countries.
4. Enter the following script:

CountryMap:

MAPPING LOAD * INLINE [

Country, NewCountry

U.S.A., US

U.S., US

United States, US

United States of America, US

];

The CountryMap table stores two columns: Country and NewCountry. The Country column
stores the various ways country has been entered in the Country field. The NewCountry
column stores how the values will be mapped. This mapping table will be used to store
consistent US country values in the Country field. For instance, if U.S.A. is stored in the
Country field, map it to be US.

4.4 ApplyMap() function
Use ApplyMap() to replace data in a field based on a previously created mapping table. The
mapping table need to be loaded before the ApplyMap() function can be used. The data in the
Data.xlsx table that you will load looks like this:

Data table

ID Name Country Code

1 John Black U.S.A. SDFGBS1DI

2 Steve Johnson U.S. 2ABC

3 Mary White United States DJY3DFE34

4 Susan McDaniels u DEF5556

5 Dean Smith US KSD111DKFJ1

Notice that the country is entered in various ways. In order to make the country field consistent, the
mapping table is loaded and then the ApplyMap() function is used.

Do the following:

1. Beneath the script you entered above, select and load Data.xlsx, and then insert the script.
2. Enter the following above the newly created LOAD statement:

Data:

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 34

4 Data cleansing

Your script should look like this:

CountryMap:

MAPPING LOAD * INLINE [

Country, NewCountry

U.S.A., US

U.S., US

United States, US

United States of America, US

];

Data:

LOAD

ID,

Name,

Country,

Code

FROM [lib://AttachedFiles/Data.xlsx]

(ooxml, embedded labels, table is Sheet1);

3. Modify the line containing Country, as follows:
ApplyMap('CountryMap', Country) as Country,

The first parameter of the ApplyMap() function has the map name enclosed in single quotes.
The second parameter is the field that has the data that is to be replaced.

4. Click Load data.
The resulting table looks like this:

Table showing data loaded using ApplyMap() function

The various spellings of the United States have all been changed to US. There is one record
that was not spelled correctly so the ApplyMap() function did not change that field value.
Using the ApplyMap() function, you can use the third parameter to add a default expression if
the mapping table does not have a matching value.

5. Add 'US' as the third parameter of the ApplyMap() function, to handle such cases when the
country may have been entered incorrectly:
ApplyMap('CountryMap', Country, 'US') as Country,

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 35

4 Data cleansing

Your script should look like this:

CountryMap:

MAPPING LOAD * INLINE [

Country, NewCountry

U.S.A., US

U.S., US

United States, US

United States of America, US

];

Data:

LOAD

ID,

Name,

ApplyMap('CountryMap', Country, 'US') as Country,

Code

FROM [lib://AttachedFiles/Data.xlsx]

(ooxml, embedded labels, table is Sheet1);

6. Click Load data.
The resulting table looks like this:

Table showing data loaded using ApplyMap function

To learn more about ApplyMap(), see this blog post in Qlik Community: Don't join - use
Applymap instead

4.5 MapSubstring() function
The MapSubstring() function allows you to map parts of a field.

In the table created by ApplyMap() we now want the numbers to be written as text, so the
MapSubstring() function will be used to replace the numeric data with text.

In order to do this a mapping table first needs to be created.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 36

https://community.qlik.com/t5/Qlik-Design-Blog/Don-t-join-use-Applymap-instead/ba-p/1467592
https://community.qlik.com/t5/Qlik-Design-Blog/Don-t-join-use-Applymap-instead/ba-p/1467592

4 Data cleansing

Do the following:

1. Add the following script lines after the CountryMap section, but before the Data section.
CodeMap:

MAPPING LOAD * INLINE [

F1, F2

1, one

2, two

3, three

4, four

5, five

11, eleven

];

In the CodeMap table, the numbers 1 through 5, and 11 are mapped.

2. In the Data section of the script modify the Code statement as follows:
MapSubString('CodeMap', Code) as Code

Your script should look like this:

CountryMap:

MAPPING LOAD * INLINE [

Country, NewCountry

U.S.A., US

U.S., US

United States, US

United States of America, US

];

CodeMap:

MAPPING LOAD * INLINE [

F1, F2

1, one

2, two

3, three

4, four

5, five

11, eleven

];

Data:

LOAD

ID,

Name,

ApplyMap('CountryMap', Country, 'US') as Country,

MapSubString('CodeMap', Code) as Code

FROM [lib://AttachedFiles/Data.xlsx]

(ooxml, embedded labels, table is Sheet1);

3. Click Load data.
The resulting table looks like this:

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 37

4 Data cleansing

Table showing data loaded using MapSubString function

The numeric characters were replaced with text in the Code field. If a number appears more
than once as it does for ID=3, and ID=4, the text is also repeated. ID=4. Susan McDaniels had
a 6 in her code. Since 6 was not mapped in the CodeMap table, it remains unchanged. ID=5,
Dean Smith, had 111 in his code. This has been mapped as 'elevenone'.

To learn more about MapSubstring(), see this blog post in Qlik Community: Mapping …
and not the geographical kind

4.6 Map … Using
The Map … Using statement can also be used to apply a map to a field. However, it works a little
differently than ApplyMap(). While ApplyMap() handles the mapping every time the field name is
encountered, Map … Using handles the mapping when the value is stored under the field name in
the internal table.

Let’s take a look at an example. Assume we were loading the Country field multiple times in the
script and wanted to apply a map every time the field was loaded. The ApplyMap() function could
be used as illustrated earlier in this tutorial or Map … Using can be used.

If Map … Using is used then the map is applied to the field when the field is stored in the internal
table. So in the example below, the map is applied to the Country field in the Data1 table but it would
not be applied to the Country2 field in the Data2 table. This is because the Map … Using statement
is only applied to fields named Country. When the Country2 field is stored to the internal table it is
no longer named Country. If you want the map to be applied to the Country2 table then you would
need to use the ApplyMap() function.

The Unmap statement ends the Map … Using statement so if Country were to be loaded after the
Unmap statement, the CountryMap would not be applied.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 38

https://community.qlik.com/t5/Qlik-Design-Blog/Mapping-and-not-the-geographical-kind/ba-p/1463192
https://community.qlik.com/t5/Qlik-Design-Blog/Mapping-and-not-the-geographical-kind/ba-p/1463192

4 Data cleansing

Do the following:

1. Replace the script for the Data table with the following:
Map Country Using CountryMap;

Data1:

LOAD

ID,

Name,

Country

FROM [lib://AttachedFiles/Data.xlsx]

(ooxml, embedded labels, table is Sheet1);

Data2:

LOAD

ID,

Country as Country2

FROM [lib://AttachedFiles/Data.xlsx]

(ooxml, embedded labels, table is Sheet1);

UNMAP;

2. Click Load data.
The resulting table looks like this:

Table showing data loaded using Map … Using function

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 39

5 Handling hierarchical data

5 Handling hierarchical data
Hierarchies are an important part of all business intelligence solutions, used to describe
dimensions that naturally contain different levels of granularity. Some are simple and
intuitive whereas others are complex and demand a lot of thinking to be modeled
correctly.

From the top of a hierarchy to the bottom, the members are progressively more detailed. For
example, in a dimension that has the levels Market, Country, State and City, the member Americas
appears in the top level of the hierarchy, the member U.S.A. appears in the second level, the
member California appears in the third level and San Francisco in the bottom level. California is
more specific than U.S.A., and San Francisco is more specific than California.

Storing hierarchies in a relational model is a common challenge with multiple solutions. There are
several approaches:

l The Horizontal hierarchy
l The Adjacency list model
l The Path enumeration method
l The Nested sets model
l The Ancestor list

For the purposes of this tutorial we will be creating an Ancestor list since it presents the hierarchy in
a form that is directly usable in a query. Further information on the other approaches can be found
in Qlik Community.

5.1 Hierarchy prefix
The Hierarchy prefix is a script command that you put in front of a LOAD or SELECT statement that
loads an adjacent nodes table. The LOAD statement needs to have at least three fields: An ID that is
a unique key for the node, a reference to the parent and a name.

The prefix will transform a loaded table into an expanded nodes table; a table that has a number of
additional columns, one for each level of the hierarchy.

Do the following:

1. Create a new app and give it a name.
2. Add a new script section in the Data load editor.
3. Call the section Wine.
4. Under AttachedFiles in the right menu, click Select data.
5. Upload and then select Winedistricts.txt.
6. In the Select data fromwindow, uncheck the Lbound and RBound fields so that they are not

loaded.
7. Click Insert script.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 40

5 Handling hierarchical data

8. Enter the following above the LOAD statement:
Hierarchy (NodeID, ParentID, NodeName)

Your script should look like this:

Hierarchy (NodeID, ParentID, NodeName)

LOAD

NodeID,

ParentID,

NodeName

FROM [lib://AttachedFiles/Winedistricts.txt]

(txt, utf8, embedded labels, delimiter is '\t', msq);

9. Click Load data.
10. Use the Preview section of the Data model viewer to view the resulting table.

The resulting expanded nodes table has exactly the same number of records as its source
table: One per node. The expanded nodes table is very practical since it fulfills a number of
requirements for analyzing a hierarchy in a relational model:

l All the node names exist in one and the same column, so that this can be used for
searches.

l In addition, the different node levels have been expanded into one field each; fields
that can be used in drill-down groups or as dimensions in pivot tables.

l In addition, the different node levels have been expanded into one field each; fields
that can be used in drill-down groups.

l It can be made to contain a path unique for the node, listing all ancestors in the right
order.

l It can be made to contain the depth of the node, i.e. the distance from the root.
The resulting table looks like this:

Table showing sample of data loaded using Hierarchy prefix

5.2 HierarchyBelongsTo prefix
Like the Hierarchy prefix, the HierarchyBelongsTo prefix is a script command that you put in front of
a LOAD or SELECT statement that loads an adjacent nodes table.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 41

5 Handling hierarchical data

Also here, the LOAD statement needs to have at least three fields: An ID that is a unique key for the
node, a reference to the parent and a name. The prefix will transform the loaded table into an
ancestor table, a table that has every combination of an ancestor and a descendant listed as a
separate record. Hence, it is very easy to find all ancestors or all descendants of a specific node.

Do the following:

1. Modify the Hierarchy statement in the Data load editor so that it reads as follows:
HierarchyBelongsTo (NodeID, ParentID, NodeName, BelongsToID, BelongsTo)

2. Click Load data.
3. Use the Preview section of the Data model viewer to view the resulting table.

The ancestor table fulfills a number of requirements for analyzing a hierarchy in a relational
model:

l If the node ID represents the single nodes, the ancestor ID represents the entire trees
and sub-trees of the hierarchy.

l All the node names exist both in the role as nodes and in the role as trees, and both
can be used for searches.

l It can be made to contain the depth difference between the node depth, and the
ancestor depth, that is, the distance from the root of the sub-tree.

The resulting table looks like this:

Table showing data loaded using HierarchyBelongsTo prefix

Authorization
It is not uncommon that a hierarchy is used for authorization. One example is an organizational
hierarchy. Each manager should have the right to see everything pertaining to their own
department, including all its sub-departments. But they should not necessarily have the right to see
other departments.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 42

5 Handling hierarchical data

Organizational hierarchy example

This means that different people will be allowed to see different sub-trees of the organization. The
authorization table may look like the following:

ACCESS NTNAME PERSON POSITION PERMISSIONS

USER ACME\JRL John CPO HR

USER ACME\CAH Carol CEO CEO

USER ACME\JER James Director Engineering Engineering

USER ACME\DBK Diana CFO Finance

USER ACME\RNL Bob COO Sales

USER ACME\LFD Larry CTO Product

Authorization table

In this case, Carol is allowed to see everything pertaining to the CEO and below; Larry is allowed to
see the Product organization; and James is allowed to see the Engineering organization only.

Example:

Often the hierarchy is stored in an adjacent nodes table. In this example, to solve this, you can load
the adjacent nodes table using a HierarchyBelongsTo and name the ancestor fieldTree.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 43

5 Handling hierarchical data

If you want to use Section Access, load an upper case copy of Tree and call this new field
PERMISSIONS. Finally, you need to load the authorization table. These two last steps can be done
using the following script lines. Note that the TempTrees table is the table created by the
HierarchyBelongsTo statement.

Note that this is an example only. There is no accompanying exercise to be completed in Qlik Sense.

Trees:

LOAD *,

Upper(Tree) as PERMISSIONS

Resident TempTrees;

Drop Table TempTrees;

Section Access;

Authorization:

LOAD ACCESS,

NTNAME,

UPPER(Permissions) as PERMISSIONS

From Organization;

Section Application;

This example would produce the following data model:

Data model: Authorization, Trees, Fact, and Nodes tables

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 44

6 QVD files

6 QVD files
A QVD (QlikView Data) file is a file containing a table of data exported from Qlik Sense or QlikView.
QVD is a native Qlik format and can only be written to and read by Qlik Sense or QlikView. The file
format is optimized for speed when reading data from a Qlik Sense script but it is still very compact.
Reading data from a QVD file is typically 10-100 times faster than reading from other data sources.

QVD files can be read in two modes: standard (fast) and optimized (faster). The selected mode is
determined automatically by the Qlik Sense script engine. Optimized mode can be utilized only
when all loaded fields are read without any transformations (formulas acting upon the fields),
although renaming of fields is allowed. A Where clause causing Qlik Sense to unpack the records
will also disable the optimized load.

A QVD file holds exactly one data table and consists of three parts:

l An XML header (in UTF-8 char set) describing the fields in the table, the layout of the
subsequent information and some other metadata.

l Symbol tables in a byte-stuffed format.
l Actual table data in a bit-stuffed format.

QVD files can be used for many purposes. Four major uses can be easily identified. More than one
may apply in any given situation:

l Increasing data load speed
By buffering non-changing or slowly-changing blocks of input data in QVD files, script
execution becomes considerably faster for large data sets.

l Decreasing load on database servers
The amount of data fetched from external data sources can also be greatly reduced. This
reduces the workload on external databases and network traffic. Furthermore, when several
Qlik Sense scripts share the same data, it is only necessary to load it once from the source
database into a QVD file. The other applications can make use of the same data through this
QVD file.

l Consolidating data from multiple Qlik Sense applications.
With the Binary script statement it is possible to load data from only one single Qlik Sense
application into another one, but with QVD files a Qlik Sense script can combine data from
any number of Qlik Sense applications. This opens up possibilities for applications
consolidating similar data from different business units etc.

l Incremental load
In many common cases the QVD functionality can be used for facilitating incremental load by
exclusively loading new records from a growing database.

To see how the Qlik Community is using Qlik Application Automation to improve QVD
load times, see≤ How to split QVDs using an automation to improve reloads.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 45

https://community.qlik.com/t5/Official-Support-Articles/How-to-split-QVDs-using-an-automation-to-improve-reloads/ta-p/1997153

6 QVD files

6.1 Creating QVD files
A QVD file can be created in two ways:

l Explicit creation and naming using the Store command in the Qlik Sense script.
State in the script that a previously-read table, or part thereof, is to be exported to an
explicitly-named file at a location of your choice.

l Automatic creation and maintenance from script.
By preceding a load or select statement with the Buffer prefix, Qlik Sense will automatically
create a QVD file, which under certain conditions, can be used instead of the original data
source when reloading data.

There is no difference between the resulting QVD files, with regard to reading speed.

Store
This script statement creates an explicitly named QVD, CSV, or txt file.

Syntax:
Store[*fieldlist from] table into filename [format-spec];

The statement can only export fields from one data table. If fields from several tables are to be
exported, an explicit join must be made previously in the script to create the data table that should
be exported.

The text values are exported to the CSV file in UTF-8 format. A delimiter can be specified, see
LOAD. The store statement to a CSV file does not support BIFF export.

Examples:

Store mytable into [lib://AttachedFiles/xyz.qvd];

Store * from mytable into [lib://FolderConnection/xyz.qvd];

Store myfield from mytable into 'lib://FolderConnection/xyz.qvd';

Store myfield as renamedfield, myfield2 as renamedfield2 from mytable into

[lib://AttachedFiles/xyz.qvd];

Store mytable into 'lib://FolderConnection/myfile.txt';

Store * from mytable into 'lib://FolderConnection/myfile.csv';

Do the following:

1. Open the Advanced Scripting Tutorial app.
2. Click the Product script section.
3. Add the following to the end of the script:

Store * from Product into [lib://AttachedFiles/ProductData.qvd](qvd);

Your script should look like this:

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 46

6 QVD files

CrossTable(Month, Sales)

LOAD

Product,

"Jan 2014",

"Feb 2014",

"Mar 2014",

"Apr 2014",

"May 2014"

FROM [lib://AttachedFiles/Product.xlsx]

(ooxml, embedded labels, table is Product);

Store * from Product into [lib://AttachedFiles/ProductData.qvd](qvd);

4. Click Load data.
The Product.qvd file should now be in the list of files.

This data file is the result of the Crosstable script and is a three-column table, one column
for each category (Product, Month, Sales). This data file could now be used to replace the
entire Product script section.

6.2 Reading data from QVD files
A QVD file can be read into or accessed by Qlik Sense by the following methods:

l Loading a QVD file as an explicit data source. QVD files can be referenced by a load
statement in the Qlik Sense script just like any other type of text files (csv, fix, dif, biff, and so
on).

Examples:

LOAD * from 'lib://FolderConnection/xyz.qvd' (qvd);

LOAD fieldname1, fieldname2 from [lib://FolderConnection/xyz.qvd] (qvd);

LOAD fieldname1 as newfieldname1, fieldname2 as newfieldname2 from

[lib://AttachedFiles/xyz.qvd](qvd);

l Automatic loading of buffered QVD files. When using the buffer prefix on load or select
statements, no explicit statements for reading are necessary. Qlik Sense will determine the
extent to which it will use data from the QVD file as opposed to acquiring data using the
original LOAD or SELECT statement.

l Accessing QVD files from the script. A number of script functions (all beginning with QVD)
can be used for retrieving various information on the data found in the XML header of a QVD
file.

Do the following:

1. Comment out the entire script in the Product script section.
2. Enter the following script:

Load * from [lib://AttachedFiles/ProductData.qvd](qvd);

3. Click Load data.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 47

6 QVD files

The data is loaded from the QVD file.

Data load progress window

To learn about using QVD files for incremental loads, see this blog post in Qlik
Community: Overview of Qlik Incremental Loading

Buffer
QVD files can be created and maintained automatically via the Buffer prefix. This prefix can be used
on most LOAD and SELECT statements in script. It indicates that QVD files are used to cache/buffer
the result of the statement.

Syntax:
Buffer [(option [, option])] (loadstatement | selectstatement)

option::= incremental | stale [after] amount [(days | hours)]

If no option is used, the QVD buffer created by the first execution of the script will be used
indefinitely.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 48

https://community.qlik.com/t5/Qlik-Design-Blog/Overview-of-Qlik-Incremental-Loading/ba-p/1466780

6 QVD files

Example:

Buffer load * from MyTable;

stale [after] amount [(days | hours)]

Amount is a number specifying the time period. Decimals may be used. The unit is assumed to be
days if omitted.

The stale after option is typically used with database sources where there is no simple timestamp
on the original data. A stale after clause simply states a time period from the creation time of the
QVD buffer after which it will no longer be considered valid. Before that time the QVD buffer will be
used as source for data and after that the original data source will be used. The QVD buffer file will
then automatically be updated and a new period starts.

Example:

Buffer (stale after 7 days) load * from MyTable;

Incremental

The incremental option enables the ability to read only part of an underlying file. The previous size
of the file is stored in the XML header in the QVD file. This is particularly useful with log files. All
records loaded at a previous occasion are read from the QVD file whereas the following new
records are read from the original source and finally an updated QVD file is created.

Note that the incremental option can only be used with LOAD statements and text files and that
incremental load cannot be used where old data is changed or deleted.

Example:

Buffer (incremental) load * from MyLog.log;

QVD buffers will normally be removed when no longer referenced anywhere throughout a complete
script execution in the appthat created it or when the app that created it no longer exists. The Store
statement should be used if you wish to retain the contents of the buffer as a QVD or CSVfile.

Do the following:

1. Create a new app and give it a name.
2. Add a new script section in the Data load editor.
3. Under AttachedFiles in the right menu, click Select data.
4. Upload and then select Cutlery.xlsx.
5. In the Select data fromwindow, click Insert script.
6. Comment out the fields in the load statement, and change the load statement to the

following:
Buffer LOAD *

Your script should look like this:

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 49

6 QVD files

Buffer LOAD *

// "date",

// item,

// quantity

FROM [lib://AttachedFiles/Cutlery.xlsx]

(ooxml, embedded labels, table is Sheet1);

7. Click Load data.
The first time that you load data, it is loaded from Cutlery.xlsx.

Data load progress window

The Buffer statement also creates a QVD file and stores it in Qlik Sense. In a Qlik Sense
Enterprise on Windows deployment, it is stored in a directory on the Qlik Sense server.

8. Click Load data again.
9. This time the data is loaded from the QVD file created by the Buffer statement when you

loaded the data for the first time.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 50

6 QVD files

Data load progress window

6.3 Thank you!
Now you have finished this tutorial, and hopefully you have gained some more knowledge about
scripting in Qlik Sense. Please visit our website for more information on the further training
available.

Tutorial - Next Steps in Scripting - Qlik Sense, May 2024 51

	1 Welcome to this tutorial!
	1.1 What you will learn
	1.2 Who should take this course
	1.3 Package contents
	1.4 Lessons in this tutorial
	1.5 Further reading and resources

	2 LOAD and SELECT statements
	3 Transforming data
	3.1 Using the Crosstable prefix
	Crosstable prefix
	Clearing the memory cache

	3.2 Combining tables with Join and Keep
	Join
	Using Join
	Keep
	Inner
	Left
	Right

	3.3 Using inter-record functions: Peek, Previous, and Exists
	Peek()
	Previous()
	Exists()
	Using Peek() and Previous()
	Using Exists()

	3.4 Matching intervals and iterative loading
	Using the IntervalMatch() prefix
	Using a While loop and iterative loading IterNo()
	Open and closed intervals

	4 Data cleansing
	4.1 Mapping tables
	Rules:

	4.2 Mapping functions and statements
	4.3 Mapping prefix
	4.4 ApplyMap() function
	4.5 MapSubstring() function
	4.6 Map … Using

	5 Handling hierarchical data
	5.1 Hierarchy prefix
	5.2 HierarchyBelongsTo prefix
	Authorization

	6 QVD files
	6.1 Creating QVD files
	Store

	6.2 Reading data from QVD files
	Buffer

	6.3 Thank you!

